

HL-LHC (High Luminosity LHC)

General Overview

Isabel Bejar Alonso - CERN HL-LHC Configuration, Quality & Resources Officer On behalf of the HL-LHC Project team

TOBB İkiz Kuleler, ANKARA, 14th April 2016

The HL-LHC Project Goals, schedule and project structure

Goal of High Luminosity LHC (HL-LHC) as fixed in November 2010

From FP7 HiLumi LHC Design Study application

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of $L_{int} =$ **3000 fb⁻¹** twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

 $\label{eq:Lult} \begin{array}{l} \mbox{Concept of ultimate performance recently defined:} \\ \mbox{L}_{ult} \cong \textbf{7.5 10^{34} cm^{-2} s^{-1}} \mbox{ and } \mbox{Ultimate Integrated } \mbox{L}_{int ult} \sim 4000 \mbox{ fb}^{-1} \\ \mbox{LHC should not be the limit, would Physics require more...} \end{array}$

Nominal parameters would be reached in 2037

LHC / HL-LHC Plan

HL-LHC Project Governance

HL-LHC Workpackages

MEMBER STATES COLLABORATIONS¹

IR Magnets

CEA Saday: P. Védrine, J-M. Rifflet, H. Felice CIEMAT Madrid: J-M. Perez, F. Toral INFN: A. Zoccoli², G. Volpini³, P. Fabbricatore⁴ Uppsala University: T. Ekelöf

UK: R. Appleby⁵ (Spokesperson & Collimation), G. Burt⁶ (Crab Cavities), S. Gibson⁷ (Beam Instr.), Y. Yang⁸ (Cold Powering)

HL-LHC PROJECT MANAGEMENT

Project Leader: Lucio Rossi, CERN Deputy Project Leader: Oliver Brüning, CERN Project Office Manager: Laurent Tavian, CERN Configuration, QA, Resource Manager: Isabel Bejar Alonso, CERN Integration: Paolo Fessia, CERN Collaborations & Consolidation: Beniamino Di Girolamo, CERN Budget Officer: Benoit Delille, CERN Safety Officer: Thomas Otto, CERN Secretariat: Cécile Noels & Julia Cachet, CERN

NON MEMBER STATES COLLABORATIONS¹

US HL-LHC AUP⁹ - USA Project Manager: G. Apollinari, FNAL Deputy Project Manager: R. Carcagno, FNAL Magnet Systems G. Ambrosio, FNAL Crab Cavities System A. Ratti, LBNL, L. Ristori, FNAL

KEK - Japan LHC Upgrade Coordinator: K. Tokushuku SC D1 Magnet: T. Nakamoto

WP2 Accelerator Physics Gianluigi Arduini Rogelio Tomas Garcia

WP3 IR Magnets Ezio Todesco Paolo Ferracin

WP4 Crab Cavities & RF Rama Calaga Ofelia Capatina

WP5 Collimation Stefano Redaelli Roderik Bruce WP6B Warm Powering Jean-Paul Burnet Michele Martino

WP6A Cold Powering

Amalia Ballarino

Vittorio Parma

WP7 Machine Protection Daniel Wollman Reiner Denz

WP8 Collider-Experiment Interface Helmut Burkhardt – Francisco Sanchez Galan

WP9 Cryogenics

Serge Claudet

Rob Van Weelderen

WP10 Energy Deposition & R2E Markus Brugger – Francesco Cerutti

> WP11 11 T Dipole Frédéric Savary Hervé Prin

WP12 Vacuum Vincent Baglin Roberto Kersevan

WP13 Beam Instrumentation Rhodri Jones Hermann Schmickler

WP14 Beam Transfer Chiara Bracco Brennan Goddard

² INFN Directorate ³ INFN Milano LASA ⁴ INFN Genova ⁵ University of Manchester/Cockcroft Institute ⁶ Lancaster University/Cockcroft Institute ⁷ Royal Holloway/John Adams Institute ⁸ University of Southampton ⁹ US HL-LHC Accelerator Upgrade Project

The HL-LHC Project Main components, technical services and infrastructure

Many points around the ring LHC POINT 4 POINT 3 $\Pi_{-}\Pi_{+}\Pi_{+}$ Pt.5 POINT 2 ALICE HL-LHC POINT 6 Pt.1 Surface & Underground POINT 7 Underground POIN LHCB Main worksites HI-LHC

New Insertion Region lay out

Why changing the inner triplets

LHC has better aperture than anticipated and all margin can now be used. However seems very difficult to have $\beta^* < 35-40$ cm (55 cm being the nominal)

Working on the Inner triplet magnets

MQXFS01 test

Test at FNAL in progress. The magnet tested at Fermilab consists of two coils manufactured at CERN and two others manufactured by the LARP (LHC Accelerator Research Program) consortium

Overall, about 150 magnets are needed

Superconducting crab cavities – Why?

Deflecting (or crab) cavities will be needed for **compensation of the effective geometric crossing angle** (θ_c) at the Interaction Points (IP) to recover the luminosity loss due to increased crossing angle

Bunches colliding with a crossing angle without (left) and with (right) the crab crossing

- The cavities generate a transverse electric field that rotates each bunch by θ_C/2. The time dependent transverse kick from an RF deflecting cavity is used to perform a bunch rotation, in the x-z plane or y-z plane depending on the crossing angle orientation, about the barycentre of the bunch.
- The kick is transformed to a relative displacement of the head and the tail of the bunch at the IP to impose a head-on collision while maintaining the required beam separation to minimize parasitic collisions

Crab cavities

Mostly standardized interfaces and common platform

Main differences

- Cavity symmetry & length
- HOM couplers

Double Quarter Wave, Vertical Deflection

> RF Dipole Horizontal Deflection

SPS Cryomodule: Include 2 identical cavities

Double Quarter Wave

Why upgrading the Collimation system

- Because of a high stored energy, above 700 MJ, the beams in LHC are highly destructive. Even a local beam loss of a tiny fraction of the full beam in a superconducting magnet could cause a quench, and large beam losses could cause damage to accelerator components
- In the LHC, a multistage collimation system has been installed to safely dispose of beam losses
- The HiLumi LHC imposes increased challenges to the collimation system. The factor ~2 increase in total stored beam energy requires a corresponding improvement of cleaning performance to achieve the same losses in the superconducting magnets

Collimation system evolving with the Run

Increasing availability

Eliminating Technical bottlenecks

The 11T Dipole Two-in-One for DS

Beam diagnostic improvement

- Cryogenic BLMs & Radiation Hard Electronics
 - Cryogenic BLMs
 - Radiation hard electronics
- Fast WireScanners
- Insertion Region BPMs
 - Cold directional couplers
 - Tungsten shielded cold directional couplers
 - Warm directional couplers
 - High precision electronics for insertion region BPMs
- Luminosity Monitors
- Diagnostics for Crab Cavities
- Upgrade to Synchrotron Light Monitors
 - Upgrade to existing monitor
 - New light source
 - Halo diagnostics
- Beam Gas Vertex Detector
 - Final Implementation
- Long-Range Beam-Beam Compensator
 - Prototype
 - Final Implementation

And many other improvements

- **Machine protection:** improved robustness to mis-injected beams, to kickers sparks will be required. The kicker system, collimation and TDI, is the main shield against severe beam induced damage.
- Quench Protection System of SC magnets to remake a 20 years old design.
- Remote manipulation: the level of activation around 2020 requires development of special equipment to allow replacing/servicing collimators, magnets, vacuum components etc., according to ALARA principle. Remote manipulation, enhanced reality and supervision is the key to minimizing the radiation doses sustained during interventions.

• Vacuum ...

Surface buildings

		DIMENSIONS (m)		
Description	Sigle	н	L	w
Plateforme réservoirs hélium	SHE	5	33	5
Bâtiment ventilation	SU	9	30	22
Bâtiment électrique	SE	3	30	10
Bâtiment tête de puits	SD	15	32	20
Bâtiment compresseurs	SHM	9.5	50	15
Rectifier Building 3175	SR	7	12	8
Tour de refroidissement	SF	12	25	20
Bâtiment déchargement hélium	SDH	14.4	30	10

 $\approx 3'400 \text{ m}^2 \text{ new buildings}$ P1 Present surface≈ 75'200 m²
New surface≈ 91'200 m²
P5 Present surface≈ 42'300 m²
New surface≈ 55'300 m²

HILUN

Typical view of the infrastructure needs

Space needed for cable trays UR: UA: DC cables Antenna cable Signal R3.5 IT + OF + Signal AC power Signal (transit) distribution **HV** distribution Signal transit <u>R 3</u> **AC** distributior RF 1.65 Safety 000 \bigcirc AC distribution 2.2 е 1.75 000 900 8 . 1.35 . 6.06 7 500 DQS Converters 1.1 1.8 929 5.36 Transport

Size of cable trays (AC and signal): 600/60 mm. Distance between: 250mm Constraints: Cable trays must be accessible for additionnal cables.

Thank you for your attention

Special Thanks to all HL-LHC WP Leaders for their contribution

I. Bejar Alonso - Configuration, Quality and Resource Officer

HL-LHC Project Office Organization

Project Leader & Deputy Project Definition & Strategy Report to CERN Management and DHs Report to Collaboration Board Coordination technical WPs (2-14) & Collaborations

Project Office Manager

Coordination among officers, secretariat, interface with host states, General Planning Coordination, Safety follow up

Safety officer

Budget Officer Budget & its follow-up Link to RC and to DAT

KT, Outreach and Communication

37

Technical Infrastructure Officer

Civil Engineering Impact & Environ. Studies Electrical Distr. & CV Access & Alarm Logistics & link to Test Infra. Consolidation & Operations

Configuration, Quality and Resource Officer

TDR Edition & Tech. Baseline (PBS, interfaces, Tech. Specs, Technical documentation & ECR) Quality and Risk management Resource & Purchase Plan Integration and Installation Officer

Integration study and layout Lead (de-) installation Survey

Main HiLumi-LHC Magnet Features

		Туре	Material	Field/Gradient (T) / (T/m)	Aperture (mm)	Origin Design
	Q1,Q3 Q2a, Q2b	Single aperture	Nb₃Sn	132.6 T/m	150	LARP CERN
	D1	Single aperture	Nb-Ti	6.5 T	150	KEK
	D2	Twin aperture	Nb-Ti	4.5 T	105	INFN
	Q4	Two-in-one aperture	Nb-Ti	120 T/m	90	CEA
00	DS 11T	Two-in-one aperture	Nb ₃ Sn	11 T	60	CERN

